Files
heterogeneous-distributed-t…/examples/gpt3/README.md
tianyutong d6ce507681 Initial Commit of Megatron-LM-0.8.0
Change-Id: Ifb4c061207ee2644a21e161ad52fc6ff40564e39
2025-05-23 09:54:48 +08:00

1.6 KiB

GPT3 MODEL

Table of contents

1. Training setup

To run the model using a docker container run it as follows

PYTORCH_IMAGE=nvcr.io/nvidia/pytorch:24.01-py3
CHECKPOINT_PATH="" #<Specify path>
TENSORBOARD_LOGS_PATH=""#<Specify path>
VOCAB_FILE="" #<Specify path to file>/gpt2-vocab.json
MERGE_FILE="" #<Specify path to file>/gpt2-merges.txt
DATA_PATH="" #<Specify path and file prefix>_text_document

docker run \
  --gpus=all \
  --ipc=host \
  --workdir /workspace/megatron-lm \
  -v /path/to/data:/path/to/data \
  -v /path/to/megatron-lm:/workspace/megatron-lm \
  megatron-lm nvcr.io/nvidia/pytorch:24.01-py3 \
  bash examples/gpt3/train_gpt3_175b_distributed.sh $CHECKPOINT_PATH $TENSORBOARD_LOGS_PATH $VOCAB_FILE $MERGE_FILE $DATA_PATH "

NOTE: Depending on the environment you are running it the above command might like slightly different.

2. Configurations

The example in this folder shows you how to run 175B model. There are other configs you could run as well

345M

       --num-layers 12 \
       --hidden-size 512 \
       --num-attention-heads 8 \
       --seq-length 1024 \
       --tensor-model-parallel-size 1 \
       --pipeline-model-parallel-size 1 \

857M

       --num-layers 24 \
       --hidden-size 1024 \
       --num-attention-heads 16 \
       --seq-length 2048 \
       --tensor-model-parallel-size 1 \
       --pipeline-model-parallel-size 1 \