Files
tianyutong d6ce507681 Initial Commit of Megatron-LM-0.8.0
Change-Id: Ifb4c061207ee2644a21e161ad52fc6ff40564e39
2025-05-23 09:54:48 +08:00

1.5 KiB

BERT MODEL

Table of contents

1. Training setup

To run the model using a docker container run it as follows

PYTORCH_IMAGE=nvcr.io/nvidia/pytorch:24.01-py3
CHECKPOINT_PATH="" #<Specify path>
TENSORBOARD_LOGS_PATH=""#<Specify path>
VOCAB_FILE="" #<Specify path to file>//bert-vocab.txt
DATA_PATH="" #<Specify path and file prefix>_text_document

docker run \
  --gpus=all \
  --ipc=host \
  --workdir /workspace/megatron-lm \
  -v /path/to/data:/path/to/data \
  -v /path/to/megatron-lm:/workspace/megatron-lm \
  megatron-lm nvcr.io/nvidia/pytorch:24.01-py3 \
  bash examples/bert/train_bert_340m_distributed.sh $CHECKPOINT_PATH $TENSORBOARD_LOGS_PATH $VOCAB_FILE $DATA_PATH "

NOTE: Depending on the environment you are running it the above command might like slightly different.

2. Configurations

The example in this folder shows you how to run 340m large model. There are other configs you could run as well

4B

       --num-layers 48 \
       --hidden-size 2560 \
       --num-attention-heads 32 \
       --tensor-model-parallel-size 1 \
       --pipeline-model-parallel-size 1 \

20B

       --num-layers 48 \
       --hidden-size 6144 \
       --num-attention-heads 96 \
       --tensor-model-parallel-size 4 \
       --pipeline-model-parallel-size 4 \