Files
heterogeneous-distributed-t…/examples/inference/quantization/text_generation_ptq.py
tianyutong d6ce507681 Initial Commit of Megatron-LM-0.8.0
Change-Id: Ifb4c061207ee2644a21e161ad52fc6ff40564e39
2025-05-23 09:54:48 +08:00

224 lines
8.4 KiB
Python

# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
"""Sample Generate GPT."""
import functools
import os
import sys
from pathlib import Path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")))
import modelopt.torch.quantization as mtq
import torch
from datasets import load_dataset
from modelopt.torch.utils.distributed import set_data_parallel_group, set_tensor_parallel_group
from tqdm import tqdm
# [ModelOpt]: changing the default model provider to the ModelOpt version
from megatron.core import mpu
from megatron.inference.arguments import add_modelopt_args
from megatron.inference.checkpointing import load_modelopt_checkpoint
from megatron.inference.gpt.model_provider import model_provider
from megatron.inference.text_generation import generate_and_post_process
from megatron.training import get_args, get_model, initialize_megatron
from megatron.training.checkpointing import save_checkpoint
from megatron.training.utils import print_rank_0, unwrap_model
QUANT_CFG_CHOICES = {
"int8": mtq.INT8_DEFAULT_CFG,
"int8_sq": mtq.INT8_SMOOTHQUANT_CFG,
"fp8": mtq.FP8_DEFAULT_CFG,
"int4_awq": mtq.INT4_AWQ_CFG,
"w4a8_awq": mtq.W4A8_AWQ_BETA_CFG,
"int4": mtq.INT4_BLOCKWISE_WEIGHT_ONLY_CFG,
}
def add_trtllm_ckpt_export_args(parser):
"""Add additional arguments for TensorRT-LLM."""
group = parser.add_argument_group(title="trtllm")
group.add_argument(
"--export-dir", type=str, help="The output TensorRT-LLM checkpoint.",
)
group.add_argument(
"--decoder", type=str, choices=["gptnext", 'llama'], help="The decoder type of the model.",
)
group.add_argument(
"--inference-tensor-parallel",
type=int,
help="Tensor parallel for the inference time, can be different from the training config.",
default=1,
)
def add_text_generate_ptq_args(parser):
"""Add additional arguments for ModelOpt text generation PTQ."""
group = parser.add_argument_group(title='ModelOpt text generation ptq')
group.add_argument(
"--calib-dataset",
type=str,
default="cnn_dailymail",
help="Calibration datasets from HuggingFace datasets.",
)
group.add_argument(
"--calib-batch-size", type=int, default=4, help="Batch size to use for ptq calibration."
)
group.add_argument(
"--calib-size", type=int, default=512, help="Samples to use for ptq calibration."
)
parser.add_argument(
"--prompts",
type=str,
default=(
"Born in north-east France, Soyer trained as a|Born in California, Soyer trained as a"
),
help="Input texts. Please use | to separate different batches.",
)
add_modelopt_args(parser)
add_trtllm_ckpt_export_args(parser)
return parser
def get_calib_dataloader(
data="cnn_dailymail", batch_size=4, calib_size=512, max_sequence_length=512
):
if data == "pileval":
dataset = load_dataset(
"json", data_files="https://the-eye.eu/public/AI/pile/val.jsonl.zst", split="train"
)
text_column = "text"
elif data == "wikitext":
dataset = load_dataset("wikitext", "wikitext-103-v1", split="train")
text_column = "text"
elif data == "cnn_dailymail":
dataset = load_dataset("cnn_dailymail", name="3.0.0", split="train")
text_column = "article"
calib_size = max(min(len(dataset), calib_size), batch_size)
for i in range(calib_size // batch_size):
batch = dataset[i * batch_size : (i + 1) * batch_size][text_column]
for j in range(len(batch)):
batch[j] = batch[j][:max_sequence_length]
yield batch
if __name__ == "__main__":
initialize_megatron(
extra_args_provider=add_text_generate_ptq_args,
args_defaults={
'tokenizer_type': 'GPT2BPETokenizer',
'no_load_rng': True,
'no_load_optim': True,
},
)
args = get_args()
if args.num_layers_per_virtual_pipeline_stage is not None:
print_rank_0("Interleaved pipeline schedule is not yet supported for text generation.")
exit()
print_rank_0("WARNING: Forcing exit_on_missing_checkpoint to True for text generation.")
args.exit_on_missing_checkpoint = True
# Set up model and load checkpoint
# [ModelOpt]: make sure that output logits are allgathered.
text_generation_model_provider = functools.partial(model_provider, parallel_output=False)
model = get_model(text_generation_model_provider, wrap_with_ddp=False)
if args.load is not None:
load_modelopt_checkpoint(model, strict=not args.untie_embeddings_and_output_weights)
print_rank_0("Done loading checkpoint")
# Removing virtual pipeline parallel and other wrapper
assert len(model) == 1, "Above condition should have caught this"
unwrapped_model = unwrap_model(model)
all_prompts = args.prompts.split("|")
def custom_prompt_forward_loop_func(model):
for prompt in tqdm(all_prompts):
if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0:
(
prompts_plus_generations,
prompts_plus_generations_segments,
logprobs,
_,
) = generate_and_post_process(
model,
prompts=[prompt],
tokens_to_generate=128,
return_output_log_probs=True,
temperature=1.0,
)
print_rank_0(prompts_plus_generations)
else:
generate_and_post_process(model)
def hf_dataset_forword_loop_func(model):
dataloader = get_calib_dataloader(args.calib_dataset, args.calib_batch_size, args.calib_size)
for prompts in tqdm(dataloader, total=args.calib_size//args.calib_batch_size):
if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0:
(
prompts_plus_generations,
prompts_plus_generations_segments,
logprobs,
_,
) = generate_and_post_process(
model,
prompts=prompts,
tokens_to_generate=0,
return_output_log_probs=True,
temperature=1.0,
)
else:
generate_and_post_process(model)
ptq_forward_loop_func = custom_prompt_forward_loop_func
if args.calib_dataset is not None:
ptq_forward_loop_func = hf_dataset_forword_loop_func
# Setting data parallel and tensor parallel group
set_data_parallel_group(mpu.get_data_parallel_group())
set_tensor_parallel_group(mpu.get_tensor_model_parallel_group())
if args.export_quant_cfg in QUANT_CFG_CHOICES:
mtq_config = QUANT_CFG_CHOICES[args.export_quant_cfg]
if "*output_layer*" not in mtq_config["quant_cfg"]:
mtq_config["quant_cfg"]["*output_layer*"] = {"enable": False}
if "awq" in args.export_quant_cfg:
weight_quantizer = mtq_config["quant_cfg"]["*weight_quantizer"] # type: ignore
if isinstance(weight_quantizer, list):
weight_quantizer = weight_quantizer[0]
weight_quantizer["block_sizes"][-1] = 128
print_rank_0("Quantizing the model...")
mtq.quantize(unwrapped_model[0], mtq_config, ptq_forward_loop_func)
custom_prompt_forward_loop_func(model[0])
if args.save is not None and args.export_quant_cfg in QUANT_CFG_CHOICES:
save_checkpoint(1, unwrapped_model, None, None, 0)
print_rank_0(f"Fake Quantized Model:\n {unwrapped_model[0]}")
if args.export_dir:
assert args.decoder in ["gptnext", "llama"], f"Decoder type {args.decoder} not supported."
Path(args.export_dir).mkdir(parents=True, exist_ok=True)
print_rank_0("Exporting TensorRT-LLM checkpoints.")
from modelopt.torch.export import export_tensorrt_llm_checkpoint
# In TRT LLM, squared relu activation does not support bf16. So we use fp16 by default.
export_tensorrt_llm_checkpoint(
unwrapped_model[0],
args.decoder,
torch.bfloat16 if args.bf16 else torch.float16,
export_dir=args.export_dir,
inference_tensor_parallel=args.inference_tensor_parallel,
inference_pipeline_parallel=1,
use_nfs_workspace=True,
)
print_rank_0(f"TensorRT-LLM checkpoints saved to {args.export_dir}")