# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. import argparse import os import clip import torch def convert(download_root, output_path, tensor_parallel_size, use_te_layernorm_linear): device = "cuda" model, _ = clip.load("ViT-L/14@336px", device=device, download_root=download_root) state_dict = model.state_dict() new_state_dicts = [{"model": dict()} for _ in range(tensor_parallel_size)] # Indices from mapping pytorch multihead attention to megatron. kv_channels = 64 hidden_dim = 1024 num_heads = 16 indices = [] for i in range(num_heads): lb = i * kv_channels ub = (i + 1) * kv_channels indices.append(torch.arange(lb, ub, dtype=torch.int)) indices.append(torch.arange(hidden_dim + lb, hidden_dim + ub, dtype=torch.int)) indices.append(torch.arange(2 * hidden_dim + lb, 2 * hidden_dim + ub, dtype=torch.int)) indices = torch.cat(indices) for name, tensor in state_dict.items(): # Skip text model. if "visual" not in name: continue # Skip final layers not used in our model. if name == "visual.proj" or "ln_post" in name: continue # Map parameter names to ones used in megatron. new_name = "" new_tensor = tensor if new_tensor.dtype == torch.float16: new_tensor = new_tensor.to(torch.float32) # This is used for chunking some tensors to target tensor parallel size. chunk_dim = None if "class_embedding" in name: new_name = "class_token" # Our model uses class token that is expanded to input dimensions already. new_tensor = new_tensor.expand(1, 1, -1) elif "positional_embedding" in name: new_name = "position_embeddings.weight" elif "conv1" in name: new_name = "conv1.weight" elif "ln_pre.weight" in name: new_name = "ln_pre.weight" elif "ln_pre.bias" in name: new_name = "ln_pre.bias" elif "transformer.resblocks" in name: layer_idx = name.split(".")[3] base = f"decoder.layers.{layer_idx}" if "attn.in_proj_weight" in name: new_name = f"{base}.self_attention.linear_qkv.weight" new_tensor = new_tensor[indices] chunk_dim = 0 elif "attn.in_proj_bias" in name: new_name = f"{base}.self_attention.linear_qkv.bias" new_tensor = new_tensor[indices] chunk_dim = 0 elif "attn.out_proj.weight" in name: new_name = f"{base}.self_attention.linear_proj.weight" chunk_dim = 1 elif "attn.out_proj.bias" in name: new_name = f"{base}.self_attention.linear_proj.bias" elif "ln_1.weight" in name: new_name = f"{base}.input_layernorm.weight" if use_te_layernorm_linear: new_name = f"{base}.self_attention.linear_qkv.layer_norm_weight" elif "ln_1.bias" in name: new_name = f"{base}.input_layernorm.bias" if use_te_layernorm_linear: new_name = f"{base}.self_attention.linear_qkv.layer_norm_bias" elif "mlp.c_fc.weight" in name: new_name = f"{base}.mlp.linear_fc1.weight" chunk_dim = 0 elif "mlp.c_fc.bias" in name: new_name = f"{base}.mlp.linear_fc1.bias" chunk_dim = 0 elif "mlp.c_proj.weight" in name: new_name = f"{base}.mlp.linear_fc2.weight" chunk_dim = 1 elif "mlp.c_proj.bias" in name: new_name = f"{base}.mlp.linear_fc2.bias" elif "ln_2.weight" in name: new_name = f"{base}.pre_mlp_layernorm.weight" if use_te_layernorm_linear: new_name = f"{base}.mlp.linear_fc1.layer_norm_weight" elif "ln_2.bias" in name: new_name = f"{base}.pre_mlp_layernorm.bias" if use_te_layernorm_linear: new_name = f"{base}.mlp.linear_fc1.layer_norm_bias" assert new_name != "", f"unexpected layer name {name}" if chunk_dim is None: new_tensors = [new_tensor for _ in range(tensor_parallel_size)] else: new_tensors = torch.chunk(new_tensor, tensor_parallel_size, dim=chunk_dim) for i in range(tensor_parallel_size): # chunk() creates a view of a bigger tensor. clone() is used here to avoid excessive storage. new_state_dicts[i]["model"][new_name] = new_tensors[i].clone() for i in range(tensor_parallel_size): output_path_tp = os.path.join(output_path, f"state_dict_tp_{i}.pt") torch.save(new_state_dicts[i], output_path_tp) if __name__ == "__main__": parser = argparse.ArgumentParser( description=""" Convert OpenAI CLIP VIT weights to megatron format. Example usage: python clip_converter.py --download-root /some/download/folder --output /some/output/folder --tensor-parallel-size 4 """, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument( "--download-root", type=str, required=True, help="Download folder for OpenAI CLIP weights", ) parser.add_argument( "--output", type=str, required=True, help="output directory for megatron state dict file(s)" ) parser.add_argument( "--tensor-parallel-size", type=int, default=1, help="model tensor parallel size", ) parser.add_argument( "--use-te-layernorm-linear", action="store_true", help="Use Transformer Engine's LayerNormLinear", ) args = parser.parse_args() convert( args.download_root, args.output, args.tensor_parallel_size, args.use_te_layernorm_linear ) print("done.")